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We investigated the influence of a single exhaustive bout of downhill running on oxidative damage to DNA and
changes of antioxidant vitamin concentrations in rats. Plasma vitamin E levels were unchanged up to 48 hr
postexercise. However, plasma ascorbic acid (AA) levels increased after the exercise, then decreased thereafter.
This increase corresponded to a marked decrease in AA concentration in the adrenal glands. The activity of
hepatic I-gulonoy-lactone oxidase, which catalyzes AA synthesis, was unaltered after the exercise. The weight
of the adrenal glands was significantly increased 24 hr postexercise. These results indicate that the change in the
plasma AA concentration after vigorous exercise was due mainly to the release of AA from the adrenal glands.
The plasma creatine phosphokinase (CPK) activity and white blood cell (WBC) count increased 3 to 6 hr
postexercise. Over this same period, a marker of oxidative DNA damage, 8-hydroxydeoxyguanosine in DNA,
increased in the WBC, but not in the foreleg muscle. Lipid peroxide and vitamin E levels were also unchanged
in the foreleg muscle. There was a positive correlation between CPK activity in the plasma and DNA damage in
the WBC, suggesting that the DNA damage in the WBC was closely related with muscle damage due to exercise.
(J. Nutr. Biochem. 11:401-407, 2000) Elsevier Science Inc. 2000. All rights reserved.
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Introduction the possibility that exercise induces oxidative damage of
biomolecules in the body, thereby modifying the incidence
of degenerative diseases and aging. However, epidemio-
logic studies suggest that physical activity is associated with
decreased incidence of certain types of cantérs.

Induction of oxidative damage in the body seems to be
the result of an oxidative stress that exceeds the antioxidant
capacity, which is composed of antioxidants and antioxida-
tive enzymes. Ascorbic acid (AA) is known to be the most
effective water-soluble antioxidaRtAA regenerates vita-
min E, an important lipid soluble antioxidant, from the
This work was supported by Meiji Life Foundation and the Human Science vitamin E radical’ Several studies have been conducted to
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Research, The National Institute of Health and ,Nutrition, 1-23-1 Toyama, plasma AA. These studies reported that the concentra-
Shinjuku-ku, Tokyo 162-8636, Japan. tion of plasma AA was not decreased, but rather was
Received February 1, 2000; accepted June 6, 2000. increased, after exercise. The distribution of AA differs

Oxidative damage of biomolecules such as DNA and lipids
has been implicated in the modification of aging and
degenerative diseastéuring intensive exercise, uptake
and consumption of oxygen greatly increase, resulting in the
production of oxygen radicafsThe increase in oxygen
consumption has been shown to be closely related to
oxidative damage of DNA in humarisThese findings raise
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markedly throughout the body: The concentration is approx- Experimental animals

imately 2700 tlme§ higher in the adrenal glands than in 'the Male Wistar rats (aged 6 weeks), purchased from Japan Clea
plasma: Stress induces the release of AA, along with (1okyo, Japan), were housed individually in stainless steel wire-
cathecholamine, from the adrenal glands into the blood- hottomed cages in a room with a constant temperature of 23C
stream®® Increase in plasma AA concentrations have been under a 12-hr light (2:00m to 2:00am)/dark cycle. The rats were
positively correlated with increases in plasma cortisol in fed a commercial rodent chow (CE2; Japan Clea) throughout the
both rats and humarfs:* Although these findings suggest €xperiment and were acclimatized to the environment for 1 week
that the change in AA concentration in plasma after exercise before the exercise test. .The exercise rats performed one bout of
. . . . . exhaustive treadmill running (down a 17-degree slope) at 500

ISa r_eflectllon of the change in AAin the_ adrer_lal glands, this The running speed was set at 20 m/min for 5 min, then at 24 m/min
relationship has not been adequately investigated. for 90 min.

Some studies have observed exercise-induced DNA  Rats were divided into a control (sedentary) and two or three
damagée>’ but others have failed to detect such dam exercise groups of five to seven rats each. The rats were anesthe-
age'®2° Among those studies that did observe exercise- tized with pentobarbital and sacrificed at a predetermined time.
induced DNA damage, most involved vigorous exercise Blood was taken from the abdominal aorta, and organs were
conditions accompanied by muscle damage. In contrast, theremoved and weighed. The blood was immediately centrifuged at

. - 5,000 g for 3 min and the plasma was prepared. For the analysis
studies that failed to detect DNA damage were conducted AA, 40 L of the plasma was immediately mixed with 200

using moderate exercise conditions and/or trained subjectspf 69 metaphosphoric acid and stored-80°C for several days
who may have acquired elevated antioxidant capacity until analyzec?®

through training??> Generally, exercise-induced DNA All procedures were in accordance with the National Institute
damage is thought to be due to increased uptake of oxygerof Health and Nutrition guidelines for the care and use of
in the body. However, it is also possible that muscle damage 'aboratory animals.

and the subsequent inflammation are involved in exercise-

induced DNA damage, particularly in the case of blood Analytical methods

cells. In fact, exercise-induced DNA damage in blood cells Tissues were homogenized with 5 volumes of distilled water. The

has been Sh_own to be cllosely related to_ an Increase Nygq e homogenate was immediately mixed with 5 volumes of 6%
plasma creatine phosphokinase (CPK) actitfty marker metaphosphoric acid for the analysis of AA and with 10 volumes
of muscle damage. It has also been reported that intensiveof 0.15% butylated hydroxytoluene for the analysis of vitamin E
exercise induces an increase in plasma myeloperoxidasga-tocopherol), respectively. In case of the dehydroascorbic acid
levels, a marker of neutrophil activation in vifdWhenthe ~ (DHAA), samples was treated with dithiothreitol to reduce DHAA
neutrophils are activated, they release reactive oxygento AA as described elsewhef@ AA and vitamin E were analyzed

. . - by high performance liquid chromatography (HPLC) with an
species (ROS) that damage the neutraphils themselves, i lectrochemical detector (ECD) according to the method described

addition to damaging other cells or tlssﬁé§.50n_ the other  previously?3° L-gulonoy-lactone oxidase (EC1.1.3.8) activity
hand, influx of oxygen into active muscle is increased was analyzed principally according to the method of Kito et'al.
approximately 20-fold during exercise, and muscle is sus- Briefly, rat liver microsomes were incubated with 50 mM sodium
ceptible to oxidative stres$. However, little is known citrate, 1.7 mM dithiothreitol, and 2.5 mM I-gulongiactone in
about DNA damage in muscle due to exercise. 50 mM potassium phosphate buffer, pH 7.0, at 37°C for 30 min.
It is well known that more muscle damage is induced by The enzymatic reaction was stopped by the addition of a one-sixth

. . . volume of 30% metaphosphoric acid, and the reactants were
the decreased oxygen uptake following downhill running centrifuged at 10,00& g for 10 min at 4°C. The supernatant was

than by that following level running’ In addition, a single injected to HPLC with ECD for the analysis of AA.

bout of exercise induces more muscle damage than do  Analysis of 8-OHdG in WBC and muscle was performed as
repeated daily bout€ Thus, in this study, untrained rats follows. DNA was extracted using a DNA extraction kit (DNA
were subjected to a single bout of intensive downhill Extraction WB kit No. 293-50501, Wako Pure Chemical Ind.). The
running in order to examine (1) the changes in the AA isolateq DNA was digested by P1 nuqlease and acid phosphatase
concentration in plasma and in the adrenal glands following 26c0rding to the method of Yamaguchi ePaContent of 8-OHdG

. . and deoxyguanosine (dG) in the deoxynucleotides mixture were
exercise and (2) the changes in the levels of 8'hydroxydeox'simultaneously analyzed using HPLC (Shimadzu LC10AD, Shi-

yguanosine (8-OHdG) in white blood cells (WBC) and madzu Co., Kyoto, Japan) with ECD (Coulochem II, ESA, MA)
muscle and the relationship between these changes and thequipped analytical cells (detector 1, 180 mV; detector 2, 380 mV)
level of plasma CPK activity. and ultraviolet detector (Shimadzu SPD-10A, at 280 nm). The
separating conditions were as follows: column Beckman Ultras-
phere ODS (Beckman Instruments Inc., CA USA) (46250
mm); column temperature, 23°C; mobile phase, 10 mM MR(®}
containing 8% methanol; flow rate, 1 mL/min. The level of
8-OHdG in DNA was expressed as numbers of 8-OHdG pér 10
Chemicals dG.

CPK activity in plasma was determined using diagnostic kits.
L-gulono-y-lactone and acid phosphatase were purchased from Tissue homogenate was mixed with an equal volume of 1%
Sigma Chemical Co. (St. Louis, MO USA). P1 Nuclease was sodium dodecyl sulphate. Protein levels in the tissue homogenate
obtained from Seikagaku Kogyo (Tokyo, Japan). The DNA ex- were determined using a BCA protein assay kit (No. 23225, Pierce,
traction kit and CPK assay kit were obtained from Wako Pure Rockford, IL USA). Lipid peroxide levels were determined by the
Chemical Ind. (Osaka, Japan). thiobarbituric acid methotf and expressed as thiobarbituric react-

Materials and methods
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Table 1 Influence of one bout of exercise on weights of body, liver, and adrenal glands, various blood parameters, and L-gulono-y-lactone oxidase
activities in liver (experiment 1)

Control Exercise

(sedentary) 2 hr after 24 hr after 48 hr after
Body weight (BW) (g) 171 £ 2.4 169 + 6.2 169 + 4.2 174 + 3.6
Liver (BW %) 475 012 4.61 £0.10 4.96 + 0.11 5.03 = 0.07
Adrenal glands (BW % X 10 1.98 = 0.11 2.06 +0.15 2.39 + 0.09° 2.26 + 0.06
Hematocrit (%) 36.6 £ 0.5 37612 37919 354 0.8
Red blood cells (X 10%/mL) 494 + 11 510 = 10 507 £ 23 474 =13
White blood cells (X 10°/mL) 453 =53 70.6 £ 6.32 48.0 £ 5.1 43.4 2.0
CPK activity in plasma (U/L) 100 = 9.5 342 + 792 128 + 22 89 = 12
Vitamin E in plasma (uM) 14.6 = 0.68 13.1 = 0.55 14.8 = 0.34 13.9 = 0.67
L-gulono-y-lactone oxidase activities 451 017 411 +£0.28 3.99 + 0.08 3.77 £ 0.23

in liver (nmol/mg protein/min)

Values are mean = SE for 5 to 7 rats.
@Significance versus control (P < 0.05).
CPK— creatine phosphokinase.

ing substances. Blood cell count was measured by a coulterincreased significantly 24 hr postexerci3alle ). Hemat-

counter (Toa lyou Densi, Kobe, Japan). ocrit was unchanged by the exercise, but CPK activity in the
. plasma was higher in the exercised rats 2 hr postexercise
Statistical analyses (Table 1. Plasma vitamin E concentration did not differ

The data are presented as means with standard error (SEM) for thesignificantly between the exercised and control rats. How-
individual groups. Statistical analyses of the data for the groups ever, in the exercised rats, the concentration of AA in
were carried out USiI:]g analysis of variance (ANOVA) fO“OWed by p|asma was Significant|y h|gher at 2 hr and tended to be
a post-hoc test of Fisher’'s Protected Least Significant Difference. lower at 24 hr and 48 hr than that in control rafgure 1)
All statistical analyses were performed using the computer pro- L . . -
gram Stat View 4.5 (Abacus Concepts, Inc., Berkeley, CA USA). The exercise-induced change in hepatic AA \{vas S”T"'a’ to
that of plasma AA. In contrast, the change in AA in the
adrenal glands, where AA concentration was 10 times
Results higher than in the liver, was inversely related to the change
In experiment 1’ rats performed one bout of a downhill N plasma AA. The concentrations of AA in the plasma and

running trial for 90 min and then were sacrificed at 2, 24, or adrenal glands showed a significant negative correlation
48 hr postexercise. Body weight and relative liver weight (n = 21,r = —0.461,P < 0.05). In addition, the change in
were unaffected by exercise, but the weight of the adrenal the whole amount of AA in the adrenal glands due to
glands tended to be higher in the exercised rats, andexercise corresponded negatively to the actual changes in

Plasma Liver Adrenal

1201
12 120! Figure 1 Concentration of
_-L ascorbic acid (AA) in plasma,

liver, and adrenal glands in rats
subjected to 90 min of running
and in control rats (experiment
1). Untrained rats were divided
into a control (sedentary) and
three exercise groups. Rats in
the exercise groups were sub-
jected to 90 min of downhill run-
ning and then sacrificed at 2,
24, or 48 hr postexercise. *Sig-
nificance versus control level
(P < 0.05). Each column and
vertical bar indicate the mean +
SE for five to seven rats.
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Table 2 Influence of adrenal vitamin C on plasma ascorbic acid (AA)
due to exercise (experiment 1)

Changes over control levels
2 hrafter 24 hr after 48 hr after

Change in whole amount of  —148 £ 26 +139 = 44 +151 = 57

AA in adrenal glands (nmol)

Estimated change in plasma +18+*3 —-17*x5 —17=x7
AA (nmol/mL)’

Actual change in plasma +19+4 —-11*x3 -—-16=x7
AA (nmol/mL)

Values are mean = SE for five to seven rats.

"Estimated change in plasma AA was calculated according to the
following formula: Estimated change in plasma AA (nmol/mL) = —(AG)
X (CPB)~" where AG is the change in whole amount of AA in adrenal
glands; CPB is the calculated plasma volume, body weight (kg) X 80
(ml/kg) X (1-hematocrit(%) X 100~ "). (The value of 80 mlL/kg is from
Biochemist’s Hand Book (1961).

the concentrations of AA in the plasmaable 3. To
evaluate the influence of AA biosynthesis on the change in
the plasma AA, the activity of I-gulong-lactone oxidase,

which catalyzes the last step of AA synthesis, was measured

in the liver (Table 9. However, the activity of this enzyme

was somewhat lower in the exercised rats, and no correla-

tion was observed between this activity and AA concentra-
tion in the liver.
To reconfirm the changes of AA in the plasma and

Discussion

In untrained humans and animals, one bout of intensive
exercise may cause muscle damage, followed by activation
of neutrophils in response to inflammation. The activated
neutrophils produce ROS, such as superoxide and hydrogen
peroxide, which damage the neighboring cells as well as the
neutrophils themselved:?° Both the presence and activa
tion of neutrophils have been demonstrated after intensive
exercise2*3°Oh-ishi et al*® have reported that superoxide
production by neutrophils is increased after intensive exer-
cise in untrained but not in trained rats. These findings may
indicate that intensive exercise induces oxidative DNA
damage in muscle and blood cells not by increased uptake
of oxygen, but by muscle damage. We considered that one
bout of downhill running in untrained rats, which causes
more muscle damage with less oxygen uptake, would be a
good model to examine this hypothesis. Therefore, we
subjected untrained rats to a single, intensive downbhill
exercise trial, then examined the changes of oxidative DNA
damage in their blood cells and muscle and the changes of
AA in their plasma.

As shown in the Results, we detected DNA damage as an
increase in 8-OHdG in DNA from WBC. We also observed
a postexercise increase in the circulating WBC. Although
we did not examine the subpopulation of circulating WBC,
it has already been reported that intensive exercise increases
WBC count in the circulation and that neutrophils constitute
the main component of this increa&®’ Interestingly, the
increase in 8-OHdG in DNA from the WBC was positively

adrenal glands after exercise, rats were sacrificed immedi-¢qrrejated with the increase in plasma CPK activities after

ately after or 2 hr postexercise. Similar to the result shown
in Table 2 AA concentration in the plasma was signifi-
cantly increased, and the whole amount of AA in the adrenal

the exercise trialfigure 3. In our previous study*we also
observed a significant correlation & 16,r = 0.77,P <
0.001) between plasma CPK and DNA damage, as evalu-

compared with the control (sedentary) rats. The AA con-
centration (nmol/mL) in the plasma versus the whole
amount of AA (nmol) in the adrenal glands in five rats
(mean* SE) were 62+ 1.2 versus 451 22 for control,

82 * 6.6 versus 222+ 18 for immediately after exercise,
and 73* 3.7 versus 292t 26 for 2 hr postexercise. The
presence of DHAA (oxidized form of AA) was less than 5%
of total AA (DHAA + AA) in both the plasma and adrenal

from untrained and trained human subjects. A similar
correlation between CPK and DNA damage in WBC has
been detected by single-cell gel assay in humans after
intensive exercis€> Furthermore, a positive correlation

between plasma CPK activity and superoxide release from
neutrophils has been reported in humans who performed
acute exercis&® These facts indicate that intensive exer

cise-induced DNA damage is not related to increased

glands and did not differ among the exercised and control oxygen uptake into the body, but rather to the muscle

rats.

In experiment 2, rats were subjected to the same down-

hill running trial as in experiment 1, then were sacrificed 3

damage and neutrophil activation in response to inflamma-
tion. It is well known that 8-OHdG in DNA is efficiently
repaired®® The present decrease in 8-OHdG in WBC DNA

hr and 6 hr postexercise to examine the changes of plasmas hr postexercise may have been related to the DNA repair.

CPK activity and the oxidative damages to DNA in the

Exercise increases the susceptibility of muscle to both

WBC and foreleg muscle. In the exercised rats, the plasmaoxidative and mechanical damage. For example, oxygen

CPK activity and the circulating WBC count were higher
than were those in the control ratSigure 2a and 2p. The
level of 8-OHdG in DNA from the WBC was also higher in
the exercised rats at 3 HFigure 29. When the relationship
between plasma CPK activity and 8-OHdG in WBC DNA

influx and consumption in muscle have been shown to be
enhanced 20-fold during exercié&ln the present study,
however, we did not detect DNA damage in muscle. The
lack of change in lipid peroxide and vitamin E levels in
muscle due to exercise was consistent with the absence of

was examined using these data, a significant positive oxidative DNA damage in muscle. These findings suggest

correlation was noted between theRigure 3). In contrast,
8-OHdG levels in DNA from muscle did not differ between
the exercised and control ratsigure 2d. Similarly, the
levels of lipid peroxide and vitamin E in muscle were compa-
rable between the exercised and control ragble 3.
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that intensive exercise-induced oxidative DNA damage is
more prone to occur in blood cells than in muscle. If the
ROS are mainly produced in neutrophils, then interaction
involving them will be higher in blood cells than in other

tissues. A marked increase in 8-OHdG in neutrophil DNA
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subjected to 90 min of running and in control rats h after exercise h after exercise
(experiment 2). Untrained rats were divided into a

control (sedentary) and three exercise groups.
Rats in the exercise groups were subjected to 90

min of downhill running and then sacrificed at 3 hr c) DNA damage in WBC d) DNA damage in muscle
or 6 hr postexercise. *Significance versus control

level (P < 0.05). Each column and vertical bar
indicate the mean =+ SE for five to seven rats. 1.0} " 1.51
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has been detected following neutrophil activatfdi.hese Generally, vigorous exercise induces two types of stress

findings may explain why DNA damage was only detected to the body: oxidative stress and physical and/or psycho-
in blood cells in this study. We could not detect oxidative logical stress. Dietary AA requirements are known to be
damage in muscle, but detected increase in plasma CPKincreased during periods of physical and/or psychological
after the intensive exercise. This fact suggests that mechanstress, such as during exposure to intense heat of*tanid.
ical damage in the muscle is more important than oxidative this study, we investigated changes in plasma AA following
damage after the single bout of intensive downhill running. vigorous exercise in rats. As shownkigure 1, plasma AA
The mechanical damage in muscle could activate inflam- concentration was significantly increased after exercise,
matory reaction in the body by releasing cytokines and then decreased thereafter. The change in the plasma AA
activating neutrophil§® The ROS released from the acti concentration was negatively correlated with that in the
vated neutrophils would damage neighboring blood cells adrenal glands. The concentration of AA in the adrenal
and neutrophils themselves, resulting in the positive corre- glands of sedentary rats is approximately 700 times higher
lation between the levels of 8-OHdG in WBC and CPK than that in the plasm&. The estimated change in the
activity in plasma. Further detailed study will be needed to plasma AA concentration following exercise was quite
demonstrate this hypothesis. consistent with the change in the whole amount of AA in the
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cortisol*>® |n this study, no significant change in plasma
vitamin E was detected due to exercise. These facts suggest
that the major changes in plasma AA concentration after the
intensive exercise trial were due to physical stress, which is
known to influence both release and uptake of AA in the
adrenal glands.

Concentration of AA in plasma is approximately g,
whereas that in WBC is in mM. In this study, we did not
evaluate AA in WBC, but Gleeson et &lshowed that AA
in WBC is also increased after exercise as well as in plasma.

DNA damage in WBC
(80HAG/10° dG)
o
(¢ <]

0-4 I I I I I
0 100 200 300 400 500

CPK activity in plasma (U/L) 1

Figure 3 Correlation between plasma creatine phosphokinase (CPK) 2
activity and DNA damage in white blood cells (WBC; experiment 2). This
correlation was examined using the data from Figure 2. Each point 3
represents one rat.

adrenal glands, as shownTable 2 In addition, an increase

in the weight of the adrenal glands, which is an indicator of
stress, was detected after exerciSalle ). Similar de-
creases in AA concentration and increases in the weight of
adrenal glands have been reported following exercise in
guinea pigs and rat$:*?Unlike humans, rats can synthesize
AA in the liver*® However, in this study, the activity of
hepatic |-gulonoy-lactone oxidase, which is involved in 7
AA synthesis, neither increased following the exercise trial
nor correlated with the concentration of AA in the liver.
Further, similar increases in plasma AA concentration after
exercise have been reported in hum&n$:®* Consistent 4
with our present findings, Gleeson et’#bund that plasma

AA concentration was increased immediately after a 21 km
race in male subjects and that this increase was significantly10
correlated to an increase in plasma cortisol. AA is required
for the synthesis of norepinephrine from dopamine in the
adrenal gland$? It has been shown that when stress is 11
induced, AA is released from the adrenal glands into the
blood concomitant with cathecolamine and cortiddPand

that uptake of AA from the blood into the adrenal glands is 15
reduced in the presence of adrenocorticotrophic hormone or

a

[e2)

Table 3 Influence of one bout of downhill running on lipid peroxide 13
and vitamin E in muscle (experiment 2)

Control Exercise 14

(sedentary) 3 hr after 6 hr after
Vitamin E (hnmol/g tissue)  16.4 = 1.1 156707 181 £1.2 15
Lipid peroxides (TBARS) 401 £19 432+x32 43027
(nmol/g tissue)
16

Values are mean = SE for six to seven rats.
TBARS —thiobarubituric acid reacting substances. 17
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The increases of AA concentration, especially in WBC, may
influence the oxidative DNA damage in WBC after exer-
cise. Further studies focussing on these issues are needed to
clarify the mechanism of the oxidative DNA damage in
WBC after a single bout of intensive exercise.
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